5G信号来了,先进陶瓷手机外壳还会远吗

移动通信领域有着这样一个共识,即每十年都会完成一次技术演进。4G网络于年开始在全球建设,已经发展了7年时间,如果按照这个共识,5G时代很有可能将于年左右到来!

5G传输速度更快、通信信号更为复杂,且NFC、wifi及无线充电技术都将会是未来手机的标配,玻璃、陶瓷材质等非电磁屏蔽材料迎来重大机遇。相对于玻璃,工程陶瓷表面硬度更高,韧性较好,质感更佳,更加符合国内消费者的审美。但目前3D工程陶瓷加工良率不高,产量太低,亟需产业升级;所谓一代产品催生一代技术,相信3D陶瓷制造工艺在3C行业的带动下能够实现大规模、低成本量产!

先进陶瓷通常指的是采用高纯度、超细人工合成或精选的无机化合物为原料,具有精确的化学组成,精密的制造加工技术和结构设计,并具有优异特性的陶瓷。先进陶瓷按种类可分为具有高强度、高硬度、耐高温、耐腐蚀、抗氧化等特点的结构陶瓷,以及具有电气性能、磁性、生物特性、热敏性和光学特性等特点的功能陶瓷。先进陶瓷广泛应用于高温、腐蚀,电子、光学领域,作为一种新兴材料,以其优异的性能在材料领域独树一帜,受到人们的高度重视,在未来的社会中将发挥重要的作用。

一、结构陶瓷

结构陶瓷主要有:切削工具、模具、耐磨零件、泵和阀部件、发动机部件、热交换器和装甲等。主要材料有氮化硅(Si3N4)、碳化硅(SiC)、二氧化锆(ZrO2)、碳化硼(B4C)、二硼化钛(TiB2)、氧化铝(A12O3)和赛隆(Sialon)等。

(1)Si3N4基陶瓷材料

C纤维增强Si3N4基陶瓷材料,用ZrO2的变相效应防止由于纤维与基体的热膨胀系数上的不匹配而产生的裂纹,所获得的复合材料的断裂韧性提高5倍。氮化硅陶瓷以其优异的综合性能和丰富的资源成为高性能陶瓷中最有应用潜力的一种切削工具,每年约有吨氮化硅粉末用于刀具制造,价值约3亿美元。

(2)碳化硅基陶瓷

用热压工艺制得的碳化硅陶瓷,其密度可以接近理论密度,弯曲强度即使在0℃左右的高温仍可达到~MPa。用CVI法制得的C纤维补强的碳化硅复合材料,强度为MPa,而断裂韧性达到16.5MPa·m。加入25vol%TiB的碳化硅复相陶瓷,如果严格控制起始的颗粒尺寸,可使强度达到MPa,断裂强度达到8.8MPa·m。可以说碳化硅是高温空气中强度最高的材料,其热导率仅次于氧化铍陶瓷材料。中国有很多企业生产碳化硅粉,其中很大一部分出口,但是主要都是低品味的用于制造耐火砖用的碳化硅粉。东欧有15万吨/年的生产能力,北美的生产量为10万吨/年。高纯、高活性的碳化硅微细粉价格很高,为14-40美元/公斤,年需求额约1万美元,这种粉末用于制造高性能的碳化硅陶瓷。

(3)氧化锆增韧陶瓷

氧化锆增韧陶瓷在结构陶瓷研究中取得了重大的进展,经过增韧的陶瓷品种也很多,目前已经知道的可使氧化锆稳定的添加物有:氧化镁、氧化钙、氧化镧、氧化钇、氧化铈等单一的氧化物或它们的复合氧化物。被增韧的材料,除了稳定的氧化锆以外,还有氧化铝、氧化钍、尖晶石、莫来石等氧化物陶瓷。在氧化铝中添加16vol%的氧化锆增韧处理,得到材料的强度为MPa,断裂韧性为15.0MPa.m。氧化锆增韧陶瓷材料在室温下具有最高的强度和断裂韧性,今后将着重提高其高温的性能。

二、功能陶瓷

功能陶瓷是知识和技术密集型产品。人们先后发现了氧化物导体,固体电解质,压电、非线性光学材料,铁氧体、记忆材料,太阳能电池,高温氧化物超导体等。随着电子产品向轻薄短小、多功能、高可靠性和高密度表面、高集成化的发展,功能材料也有着不断的发展。

功能陶瓷的品种繁多,这类材料具有微波介电性能、气敏性能、超导性能、电阻梯度性能、铁电性能及其相变行为、多层驱动性、弛豫性能等多种优良的功能,应用十分广泛。

(1)电子绝缘材料

目前国内外常用的电子绝缘材料是Al2O3。近年来出现的新型电子绝缘材料,如AlN陶瓷,具有高强度、高绝缘性、低介电常数、高的热导率等优良的性能,且其热膨胀系数能够与单晶硅相匹配,主要应用是作为大规模集成电路和电力模块电路的散热基板。

(2)电介质材料

用于调谐电路、保护逻辑及记忆单元的陶瓷电容器介质材料多数为BaTiO3基材料,此外还有高介的复合钙钛矿材料,以研制出频率为Hz时,介电常数高达的高介材料目前晶界层电容器的出现,使常规瓷介电容器的介电常数提高数倍甚至数十倍。

(3)压电陶瓷材料

常用的压电元件:传感器、气体点火器、报警器、音响设备、医疗诊断设备及通讯等。通常的压电材料是PZT,新型的压电陶瓷材料主要有:高灵敏、高稳定压电陶瓷材料、电致伸缩陶瓷材料,热释电陶瓷材料等。

(4)磁性陶瓷材料

磁性陶瓷材料可分为硬磁性和软磁性材料两类,前者不易磁化,也不易失去磁性。代表性硬磁材料为铁氧体磁铁和稀土磁体,主要用于磁铁和磁存储元件。软磁性材料易磁化及去磁,磁场方向可以改变,主要用于交变磁场响应的电子部件。

(5)超导陶瓷材料

从二十世纪80年代对超导陶瓷的研究有重大突破以来,对高温超导陶瓷材料的研究及应用就倍受







































北京治疗白癜风术多少钱
北京哪里能治好白癜风



转载请注明地址:http://www.bujiadia.com/bdcp/414.html
  • 上一篇文章:
  • 下一篇文章:
  • 热点文章

    • 没有热点文章

    推荐文章

    • 没有推荐文章